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A cornprehensive mociel is presented for rnathematicslly describing t,he isotherrnxl. non-leactivt:. 

fillid dynamics of a mixture of particles in a gas. A multifluid approach is  followed  where  macroscopic 

transport  equations  are derived by taking  suitable ensemble  averages of the local gas and  particle 

dynamic equations. A standard phasic ensemble average  is selected for the gas phase, whereas 

the particle  equations  are derived using a kinetic theory approach where collisional transfer is 

included. Separate  transport equations are constructed for  each of the particle classes, allowing  for 

the description of the independent acceleration of the particles in each class and  the equilibration 

processes whereby momentum and energy are exchanged  between  each class, leading to a wider range 

of applicability than common mixture equations. Closure of the particle  equations is exercised  by 

providing separate velocity distributions for each of the particle classes, here specified as  Gaussian; 

this being a valid approach for small gradients  in the mean variables, and for nearly elastic particles. 

In the region of very high solids  volume fractions, the relations obtained for the stress tensor 

are  augmented by a model describing frictional transfer. The model  is applied to three different 

testcases: i) prediction of the shear and normal stresses in a homogeneous shear flow, ii) simulation 

of the particle pressure along the wall of a bubbling bed,  and iii) a comparison between simulations of 

monodisperse and binary mixtures in a homogeneously aerated bed. Where possible, the comparison 

between simulations and available experimental data is reasonable. 
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1 INTRODUCTION 

itlized  by stearn, are considered  promising for commercial operation. Since numerical sirnulatiorls 

constitute a cost-effective tool to optimize the operation of such reactors, the focus is here on a 

rnodel  for the hydrodynamic prediction of such granular mixtures. 

Experiments  indicate that in a  rapidly sheared granular flow, momentum and energy are ex- 

changed in  particle collisions rather  than  in enduring frictional contacts or through the interstitial 

gas. The particles then interact similarly to molecules of a dense gas. Important differences among 

the two systems include the occurrence of dissipation due to  the inelasticity of particle-particle 

collisiorls and  the fact that continuum time  and  length scales involve far less  collisions and  particle 

diameters, respectively. Jenkins and Richman [l] first exploited this analogy and used a kinetic 

theory approach to derive macroscopic equations of the mixture.  Their  theory was based on a 

Gaussian velocity distribution function, and  has since been  improved by considering more general 

velocity distributions [2][3], and by including effects of the interstitial gas (e.g. [4]). A crucial role 

in these theories is played  by the 'granular  temperature',  the mean kinetic energy associated with 

the velocity fluctuations of the particles. At higher solid fractions or at lower shear rates, particle- 

particle fiiction becomes the dominant mechanism of momentum transfer  and the equations must 

be augmented by a frictional stress model, usually  based on empirical constitutive laws, as in soil 

mechanics. After the pioneering work of Ding and Gidaspow [ 5 ] ,  granular flow t,heories are now 

commonly applied in the field of hydrodynamic prediction of bubbling and circulating fluidized  bed 

systems. 

The focus is here on the description of a binary particle mixture consisting of sand  and biomass. 

These particles will,  in general, have  different properties (density, diameter),  and this may lead 
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t o  t l o w - i r l c l l l c : c t c  1 scgrt:gat,ion. Adys i s  o f  bimry (or  rnult,icorn~~or~t:rtt) tlry gril,I111lilr mixtllrcs ilrc? 

avai1;tblc [tj] ,[7],[8] ,[9], but, these id1 assume the grnnulx ternperaturc of the constituttnts t o  be eq~lnl, 

this being a reasonable assumption in the absence of external driving forces and for a, mass ratio 

near unity. Furthermore, all aforementioned studies derive mixture equations for mass, momentum, 

and energy, augmented by algebraic relations for the drift velocities of the constituents, assuming 

equilibrium. Koch [lo] shows that these conditions are  not necessarily met in  the presence of an 

interstitial gas. 

Here we derive a comprehensive model for the flow  of a multicomponent particle  mixture, based 

on separate dynamic  equations for each particle class with interaction terms describing the various 

equilibration processes. The kinetic theory is based on the Gaussian approximation assuming the 

spatial  gradients of the mean variables to be small and the particles to be nearly elastic. The 

resulting closure relations are extensively discussed. The combined gas-particle multifluid model is 

applied to  a number of  flows in order to evaluate  its  quantitative predictive capabilities. 

2 MODEL 

A continuum model is derived by applying separate averaging procedures for both gas and solids. A 

phase ensemble average is used  for the continuous phase, combined with  a  particle ensemble average 

where particle  properties, such as linear velocity, are directly averaged. 

2.1 Gas phase  transport  equations 

As phasic ensemble averaging is a well-known procedure (cf. [ll]), we will only list the major  steps. 

The general ensemble average of a field quantity *(x, t ) ,  (x, t denoting space  and  time coordinates) 
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< @(x, t> >= ' @ ( x ,  t)P(#)dLd I (1) 

where P ( w )  is the probability that a specific realization w is encountered in the ensernble. The gas- 

phase ensemble average and  its density-weighted counterpart  are defined as 3 =< (x, t )  > /acI 

> /agP,, where pg is the gas density, xg denotes the phase indicator of 

the gas phase which is unity in the gas phase and zero otherwise, and  the gas phase fraction, agl 

is defined as the ensemble  average of the indicator function, i.e. < xg >. The average transport, 

equations for the gas phase now  follow  by multiplying the local instantaneous  equations of mass 

and  momentum conservation by the phase  indicator  and applying the ensemble averaging operator. 

The result is 

at + v - agpgiig = 0 

Here, 77, represents the average stress  tensor, C F  the  'turbulent'  stress tensor defined as - < 

xgpgu$u$ > /ag  which results from fluctuations (indicated by a prime) on  the mean u' = u - u, 

and Mg = - < og - Ox, > is the average phase interaction with the particles. In  the above 

derivation we have neglected mass transfer between the particles and  the gas, as here we treat only 

the isothermal, non-reactive case. It is customary to rewrite the momentum equation as ([ll]) 

- 

where F,q is the average viscous stress tensor and M$ represents the combined  effect of drag, added 

mass, etc. on the gas. The above equations require closure relations for p g ,  T g ,  E:", and Mb. 

Here we neglect gas phase turbulence effects and therefore ignore I=,... A detailed t!urbulence 

model derivation for the general reactive case can be found in [12]. The average gas pressure 
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2.2 Particle phase  transport  equations 

The  transport equations are derived similarly to those for dense gases, using kinetic theory concepts. 

An important difference  from  classical kinetic theory occurs due to  the inelasticity of collisions 

between macroscopic particles leading to dissipation. Furthermore, an  interstitial gas exerts  drag 

on the particles, leading to interaction  terms  in the averaged transport  equations. 

While a considerable literature exists on the development of equations of motion for multicom- 

ponent mixtures, most of it is restricted to  the case  where the  temperatures  and velocities of the 

species are nearly equal and evolve according to  the dynamic equations of the mixture.  This classi- 

cal mixture  theory 1131 requires that Au/O, << 1 (nu being a  characteristic relative velocity of the 

particle classes and 0, a characteristic rms velocity, i.e. temperature),  a condition not necessarily 

satisfied in granular flows. Therefore, here we derive separate dynamic equations for each of the 

particle classes, similar to  that of Goldman and Sirovich [14] for a dilute  mixture of interacting 

species. Here, a similar procedure is implemented for a dense suspension of hard spheres (cf. [lo]). 

The dynamic evolution of these systems is  governed by an  appropriate  set of Boltzmann equations 

where f;” is the single particle  distribution function of species i ,  Fi is the external force on the 

particle (i.e. gravity and gas-paxticle drag), and m, and ci are  the mass and velocity of the particle, 



where n,i is the number density of the class-i particles; ni = f a  (1) de. Defining aipi = nfimi, 

ui =< c >i, Ci = ci - ui, and Oi = f < C2 >;, where a; denotes the particle phase fraction, ui 

is the mean velocity, Ci is the fluctuating velocity, and Oi the granular temperature.  The moment 

equations are derived by multiplying the Boltzmann equation by a variable q and integrating over 

velocity space. The general transport  equation  obtained is 

Here, xik denotes  a collisional source and o i k  represents a collisional f lux,  resulting from  all types of 

collisions. The form of these collisional integrals is  given in [7]. These integrals involve the complete 

pair distribution function fji)(c17 r - 1/2~rikk, c2,  r + 1/2aikk) which  gives the probability of finding 

a pair of spheres such that particle 1 of class i is located at r - 1/2aikk with velocity c1 and  particle 

2 of class IC is at r + 1/2cikk with velocity c2, where k is the unit vector directed from the center 

of particle 1 to  that of particle 2 at  the moment of collision, and = ai + a k ,  is the  sum of the 

radii of the two spheres. 

By substituting q with 1, ci ,  and l/2cf, we obtain mass conservation, momentum conservation, 

and conservation of granular ‘turbulent’ energy equations: 

mass: 

momentum: 
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where C i  = aipi < CC >i + x k  61ik(miCi) represents the effective stress tensor of t,he particles 

consisting of a kinetic contribution (first term)  and contributions originating from  collisions with 

particles of all classes  (second term). +i = x,, xik(rniCi) is the collisional source term resulting 

from  collisions between unlike particles. The final term in the equation denotes the average force 

exerted on the particles by drag. 

granular temperature: 

The first term on the right hand side is the production of granular temperature by shearing of 

the particles. qi = aipi < 1/2C2C >i + xk  6,k(l/2miC;) is the average 'heat flux' both  due  to 

velocity fluctuations themselves (first term)  and through collisions (second term).  The source term 

yi = x,, xi,,( 1/2miC;) represents the effects of redistribution of energy among particle classes and 

the dissipative effect of inelastic collisions. The final term incorporates the effect of fluid-particle 

drag on the energy balance; depending on the  situation,  this may be either  a source or sink. 

2.2.1 Closure 

The previously derived model describes the dynamics using conservation equations for mass, mo- 

mentum and granular  temperature of each solids  class. These multipleclass  equations can describe 

the independent accelerations of the species, as well as momentum and energy exchange between 

solids classes. Moreover, these  transport equations are valid  even  when Au is of t,he same  order as 

0,. 

To obtain closure of the equations, we need to specify the dynamics of collisions and  the complete 
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Collision  dynamics Assuming  exclusively binary collisions and that  the particles are perfectly 

spherical and  smooth,  the relation between the velocities of the particles right before and after a, 

collision of particle 1 of class i and  particle 2 of class IC is determined from the conservation of 

linear momentum  and energy [13]. Defining 1 as the relative velocity, c1 - c2, we assume 1 before 

and  after collision to be related as (1' k) = -eik(l . k), where eik is the  restitution coefficient, 

incorporating the effect of inelasticity on  the collisions (eik = 1 for perfectly elastic encounters). 

Therefore, ci - ci = - M k (  1 + e i k )  (1 - k)k, where M k  = mk/(mi + m k )  is the reduced mass. Thus, 

the exchange !€( - X€'i of any particle property Qi is a function of  1, k and the center of mass velocity, 

c ,  = hficl + hfkc2. 

Particle  dynamics  The momentum equation of a single particle can  be approximated as 

where the  total force  on the particle is due to gravity, gas pressure gradient and gas-particle drag. 

V,  is the volume of the particle  and 7*,12 represents the relaxation time scale of the particle. The 

(j on the gas-phase variables denotes the location of the particle, as if the surrounding flow  was 

undisturbed by its presence [4]. The gas-particle interaction time scale depends  strongly on the 

flow regime; in the  dilute regime it is derived from the drag coefficient, Cd, of a single particle in an 

infinite medium, empirically corrected for the presence of other  surrounding particles by a function 

f (a , )  = (e.g. [15]) whereas  in the dense regime the classical Ergun  relation is used. To  avoid 

discontinuous behavior, a weighted  average of the two time scales is introduced 
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on t,he relative velocity with the gas. 

In order to calculate the collisional integrals, a definitive  form for the complete pair distribution 

function is required. As in  dense gas theory, Enskog’s method is  employed to account for the 

correlations in the positions of a pair of particles just prior to collision. Here, hik(r) is the radial 

distribution  function at contact, accounting for the effects of excluded area  and particle shielding 

on the  spatial distribution of colliding pairs. Its form is taken from 171, slightly adjusted to prevent 

overpacking of the solids 

where a denotes the  total particle volume fraction and [ = 2n/3 n&. The single particle 

distribution functions are solutions of (5), here assumed to be Gaussian 

This is a good approximation if spatial gradients of the mean fields are small and  the spheres 

are nearly elastic. Using the above distributions  and neglecting products of the  spatial gradients, 

products of (1 - e i k )  with the  spatial  gradients,  and  products of Au with the  spatial gradients yields 

the following constitutive equations for 4i,  Ci ,  q i ,  and yi: 

k 
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The  terms  in +i represent solid-solid drag  and ordinary diffusion, respectively (thermal diffusion 

has been neglected). The stress tensor depends on the shear rates of all solid classes  where the shear 

viscosities arise entirely from  collisions, not from streaming (Gaussian approximation). Similar 

remarks hold for the  heat flux vector. The source terms in the granular energy equations contain 

two terms: a temperature equilibrating and  a dissipative term. 

To complete model closure, the coupling terms between gas and solids require specification. For 

the momentum equation we use 

where fluctuations in the gas-phase variables have  been neglected. For consistency between the gas 

and solids equations, M$ = xi z ( u ;  - 6,). In Eq. ( lo) ,  the coupling term is neglected which  is 

a good approximation in the case of heavy particles (large ~ ~ , ~ 2 ) .  

The constitutive equations are  restricted to  the region  where particles interact exclusively 

through slightly inelastic, short  duration, collisions.  However, as the volumetric fraction approaches 

cxo, particles will, increasingly, be in simultaneous contact with several neighbors and stresses will be 

transmitted at points of sustained sliding or  rolling contact.  This  situation is  very  difficult to t,reat 

at  the microscopic  level, leading to  its neglect in many bubbling fluidized  bed models. However, 
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ir1 (:t:rtiLiII rcgions  whcrc shear rates axe very srrldl, tht: granular t,c:rrlpcrature  may t x  too sma11 

to support  the solids phase. Hence, these codes  require ;I 'numerical fix', generally restricting  the 

computed granulas  temperature  (e.g. [16] ,[17]). To avoid this  situation, we explicitly model the 

frictional regime, particularly since it was  shown in (181 that inclusion of the frictional regime  is 

necessary for obtaining qualitatively correct behavior of granular flow. 

The approach followed  is similar to  that used in [19j, extended here for the case of multiple 

particle classes. The model proposed attains a simple relation between stresses  and  strains 

where amin is the minimum solids fraction at which frictional transfer becomes influential. Exper- 

imental observations indicate that  the frictional normal stress increases rapidly  with bulk density 

and diverges as QO is approached. A simple algebraic representation of this behavior is  (cf. [IS]) 

where Fr is a  material  constant.  The frictional viscosity, p! ,  is related to  the frictional pressure and 

the angle of internal friction, q$ 

where 1 2  denotes the second invariant of the  strain  rate tensor. Following [20], the  total  stress is 

taken as the  sum of the contriblltions from the separate mechanisms, each evaluated as though  it 

acted alone 

where the superscript  c indicates both collisional and kinetic contributions. However, in the produc- 

tion term of Eq. (lo), the frictional terms  are deleted corresponding to assuming that  the frictional 

work is directly converted to thermal  internal energy. 
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3 RESULTS 

3.1 Homogeneously sheared mixture 

Savage and Sayed [22] have measured the normal and shear stresses developed by granular  materials 

in a shear flow  cell. These experiments are  an excellent means of evaluating the solids stress part of 

the model. We focus here on binary mixtures as the single  class  case has been extensively discussed 

in [a] .  The binary  mixture consists of polystyrene beads (specific gravity 1.095) where d~ = 0.55 

and ds = 1.68mm, respectively with a restitution coefficient of 0.8. The solids fractions for the 

small and large particles constitute 30 and 70 percent of the  total bulk solids volume fraction. 

For the case of simple shear,  the model presented above becomes a set of ordinary differential 

equations which have to be supplemented with boundary conditions on the solid surfaces of the shear 

cell.  However, as the distribution of solids  in the shear cell  is  unknown and  the  boundary conditions 

uncertain, we assume the velocity gradient to be uniform and equal for both particle classes. The 

system simplifies to two  coupled algebraic equations for @ A  and O B ,  stating  that production equals 

dissipation for each size class: + yi = 0. F'rictional transfer  has been excluded from the 

present model. The present analysis differs  from that in [6], since unequal granular  temperatures  are 

used here and a different radial  distribution function is employed. Fig. 1 shows the comparisons of 

the present numerical solution of the  set of equations  and the experimental results for the mixture 

shear stress and  the normal stress as function of the shear rate du/dy and of the bulk volume 
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fru:tion. Also shown are preclictions with a single particle rrlotlel using a m m l  prt,ic:lo dia.mcter of 

1 . 3 - h m .  Genera.lly, for the lower solids fractions,  hoth theories somewhat overpredict the st,resses. 

At the highest bulk  solids fraction, all stress components are, however, strongly  underestimated 

which  most  likely indicates that  the transfer of momentum becomes  affected by friction, which  was 

neglected in this specific  case. The present, more general, binary model predictions are higher than 

the corresponding predictions in [6], owing to  the  separate granular temperatures for each class. At 

these diameter  ratios ( f 3 ) ,  the  temperatures do not equilibrate completely, leading to higher stress 

levels. The differences with the experimental data  at lower solids  bulk fraction are  attributed  to  the 

assumption of Gaussian distributions and  to  the form of the radial distribution  function to which 

the results  are highly sensitive. 

3.2 Particle pressure along the wall of a bubbling fluidized  bed 

To validate the solids pressure model and  the code, a comparison was made  with the experimental 

data of [23] reporting measurements of the solids pressure magnitude  in  a bubbling bed consisting 

of a  square channel (1.22 x 0.127 x 0. 127m3), homogeneously  fluidized with air. The bed is initially 

filled with glass beads ( d p  = 0.5mm.; p = 2500kg/m3), to a  depth of 43 m. As three dimensional 

calculations are very computationally intensive, the square channel was approximated by a flat two- 

dimensional geometry having a width equal to  the size of the channel. Calculations were performed 

at, three  conditions, i.e. at superficial gas-velocities of 0.4, 0.6 and 0.8 m/s.  The grid consists of 

36 x 96 points. Fig. 2 shows vertical profiles of the computed time-averaged  (over  left and right wall) 

solids pressure (kinetic plus frictional) along the wall, together with the experimental data of [23]. 

Considering the geometric approximation, the agreement is reasonable, demonstrating an increase of 

solids pressure with height caused by fluctuating particle motion as induced by bubble growth,  and 

a decrease to zero at greater heights where the solids fraction vanishes. Furthermore, the calculated 
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profil(;s cxllibit x 1  irlcreasc i n  solids pressure ;LS the superficial gas ve1ocit.y is incrt:;wccl. Xlost of 

t,lw solids pressurt: originates from the ltirwtic part, not from the frictional regirne. The remaining 

tliscrepmcies with the experimental data are primarily attributed  to  (i)  an insufficient period of 

avcraging causing scatter in the  data  and (ii) the geometric approximations made by simulating 

a two dimensional geometry which may change the bubble dynamics. A similar comparison was 

presented recently in [16], using a kinetic theory model, but excluding frictional stresses. Although 

the period of averaging was similar (9 sec),  their results exhibit rather spiky profiles. Possibly, 

this is caused by the specification of a minimum granular temperature. As frictional stresses are 

included in  the present model, specifying such a minimum  is  unnecessary. 

3.3 Behavior of homogeneously  fluidized  beds 

Most validation studies of granular flow models  for  fluidized beds deal with single bubble injection 

(e.g.  [16]). Generally, kinetic theory models reproduce well the qualitative  features of these geome- 

tries. The present study focuses on the global behavior of homogeneously  fluidized beds, as these 

are to be used  for the biomass  pyrolysis. The fluidized  bed studied is  0.68m  wide, initially filled up 

to 0.4m with  sand ( p ,  = 2600kg/m3, d p  = 0.5mm) or with a sand-biomass mixture (2/3 sand  1/3 

biomass volumetrically; biomass properties: P b  = 700kg/m3, d p  = 0.5mm). All computations were 

performed on a 40 x 128 grid. In order to trigger bubbling, a  disturbance was introduced in the 

initial volume fraction  distribution. 

The obtained fields are  transient owing to hydrodynamic instabilities giving rise to spatial in- 

homogeneity. Fig. 3 shows a  snapshot of the solids volume fraction and phase velocities at t = 3 

s. Bubbles can  be identified  which  form at  the  bottom of the bed and rise, growing through c o i ~  

l(~s<:ence! in accordance with visual observations in the bubbly flow regime. Typical bubble shapes 

consist of spheres with an excluded  wake at  the  bottom; also in accordance with  experimental data 
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( c f .  141). Tirnc-avcraged results (riot shown) lead to a .  flow pattern with two  synlrnctric: circulation 

loops u1t f  a .  solid fraction distribution showing a reasonably uniform clense lower bed a n t 1  a. gradu- 

ally  more diluted upper region. The solids fraction is not homogeneous  over the width of the bed, 

exhibiting higher values at  the lower near-wall region, induced by the large scale circulation. All of 

the above phenomena are well-known features of bubbling beds (e.g. [24]). 

Fig. 4 shows the time-averaged solids volume fraction (computed from data along the centerline) 

in the lower part of the bed as function of the superficial gas velocity, compared to  an experimental 

correlation from [24]. Also shown  is an equilibrium solution obtained  from a balance between 

gravity, gas-pressure gradient and gas-solid drag, which represents a simplified model of a fluidized 

bed. The computed solids fraction agrees quite well with the experimental correlation although 

some scatter is present in  the simulated data  due  to  the restricted period of time averaging. It is 

also concluded that  the average  lower-bed solids concentration is  well predicted by the assumption 

of steady homogeneous flow. 

To investigate the differences  between a binary  and a monodisperse mixture, 2 computations  are 

compared: i) using the present binary flow model with sand  and biomass properties for the  separate 

solids  classes and ii) wing a monodisperse model with volume fraction weighted particle properties. 

Qualitatively, the simulations exhibit very similar behavior. One important difference is  however 

the predicted solids distribution. The different properties of the particles cause the particle  mixture 

to segregate. A quantitative measure of segregation may be defined as S = (0 .20~ - 0.4at,)/(0.2a3 + 

0.4ab), being zero if no segregation is present and 1 or -1 for complete segregation. 

Fig 5. shows instantaneous  distributions of the solids fractions and of the segregation parameter 

in the bed at t = 6 sec. Though initially the solids are perfectly mixed, already at  this  short time 

scale, segregation of the mixture is significant on a local scale, S mostly ranging between -0.2 and 

0.2 (negative inside bubbles, carrying biomass to  the  top of the  bed).  The segregation can also be 
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clt1;mt8ificxl t)y tllc: y-c:oortlinate of t1hc ccrltcrs of I n a s s  of the salcl and lionlass, w h i r l 1  ;trc shown i n  

Fig 6 as a ,  f1mction of  time. It is shown that already onc or two scconds a.fter start,up, sctgregation is 

significant and tends to increase with time. Segregation was found to increase when the size of the 

biomass particles was decreased, due to a  greater difference in terminal velocity. The monodisperse 

simulation is clearly unable to predict any of these features and would only be useful  for establishing 

the general flow patterns. 

4 CONCLUSIONS 

In this  paper we have presented a new  comprehensive  model  for the mathematical description of 

gas particle  mixtures containing multiple solids  classes  based on  a kinetic theory  approach. The 

model has been applied to  three different testcases in order to quantify its predictive capabilities. 

Comparison of predictions of the shear and normal stress components in a simple shear flow of a 

binary mixture reveal that for the lower bulk fractions, the stresses are somewhat overpredicted, 

whereas  for the higher bulk fractions they are underpredicted, attributed to  the neglect of frictional 

transfer in this testcase. A comparison has been made for the time-averaged particle pressure along 

the wall of a bubbling fluidized bed for  different  values of the superficial gas velocity. Predictions 

are generally in reasonable agreement with the available experimental data, exhibiting a rise of the 

particle pressure as function of the height induced by bubble growth and  a rise of particle pressure 

at higher gas velocities. Predictions have  been presented for a homogeneously aerated bed both with 

sand particles and with  a sand-biomass mixture. For the monodisperse case, predictions of the solids 

volume fraction in the lower part of the bed have  been compared to  an experimental correlation 

and agreement is fairly good. Computations of a  mixture of sand  and biomass have  shown that  the 

qualitative behavior of the flow  is not changed. The binary mixture model predicted a significant 
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a r n o u n t f  o f  segregation, even during the short tinlespan here invcstigated. Considering the clll;tliti.itive 

m t i  reasonable qua.ntitative a.greement, this approach appears to  be viable for flirther invostigating 

the more  complex situation of a reactive sand-biomass mixture. 
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Figure Capt,ions 

Figure 1. Predictions of the total  shear  (left)  and normal stresses (right) generated  in a simple 

shex  flow of a binary  mixture as function of shear rate for various  bulk solids fractions, cornpared 

with the experimental data from [22]. Predictions: - binary model, - - - -, monodisperse model. 

Experimental data: .: atot = 0.498, A: atot = 0.512,o: atot = 0.528, V:  atot = 0.542. 

Figure 2. Predictions of the  total time-averaged solids pressure along the wall compared to 

experimental data of [23] at different superficial gas velocities. Predictions: 4 = 0.4: ”-; & = 0.6: 

- - - ; V, = 0.8:--, Experimental data: Vg = 0.4: .; 1/9 = 0.6: , A;  4 = 0.8: 0 .  

Figure 3.  Instantaneous fields of the solid phase fraction (left), gas velocity (middle) and solids 

velocity (right) at t = 3s. (only 1 out of every 9 velocity vectors is shown). 

Figure 4. Solid phase volume fraction  in the lower bed as function of the superficial gas veloc- 

ity: present model, - experimental correlation of 1241, - - - equilibrium solution of two-fluid 

equations. 

Figure 5. Instantaneous  distributions of sand (left) and biomass (middle)  concentrations,  and 

of the segregation parameter  (right) at  t = 6s. 

Figure 6. Time evolution of the y-coordinate of center of mass of sand  and biomass compared 

tro that of a monodispersed simulation: monodisperse:-, sand: - - - ; biomass: -.- 
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